Remarks on 3 -prime near-ring involving * - involution

Moharram A. Khan1, Aishat O. Aliyu2

1Department of Mathematics and Computer Science, Umar Musa Yaradua University, Katsina., Nigeria
2School of Basic and Remedial Studies, Funtua, Katsina state Ahmadu Bello University, Zaria, Nigeria
Email: mkhan91@gmail.com, aishatumbb@yahoo.com

Abstract

This work introduces the concept of * - involution in 3 - prime near-ring N together with its semi group ideal S and it establishes some results on N as well as S involving * - involution. In addition, examples are given to demonstrate the essentialities of 3- primeness in the hypothesis of our theorems. Finally, we conclude it with some open problems.

Keywords: Ring, near-ring, 3 -prime near-ring, * - involution, semi group ideal

1. Introduction

By a right near-ring we shall mean a non-empty set N endowed with two associative operations called addition (+) and multiplication (denoted by (⋅) and (∗) respectively) satisfying the following conditions

(i) (N, +) is an additive group (not necessarily abelian)
(ii) (N, ∗) is a semi group
(iii) Multiplication(⋅) distributes over addition(+) from the right (denoted by

\[(x + y) ∗ z = xz + yz \forall x, y, z ∈ N\]

A right near-ring N is said to be zero symmetric if x ∗ 0 = 0 ∅ x ∈ N(evolving that right distributive gives 0 ∗ x = 0). Eviduing that N is said to be 3 prime near-ring, will have the property that aNb = {0} for a, b ∈ N implies a = 0 or b = 0. Normal subgroup S of (N, +) is said to be an ideal of N if SN ⊆ S and a(b + s) − ab ∈ S for s ∈ S and a, b ∈ N.

A map ∗: N → N is said to be *-involution if for x, y ∈ N,

(i) (x + y)∗ = x∗ + y∗, (ii) (xy)∗ = x∗y∗, (iii) (x∗)∗ = x.

A near-ring N equipped with an *-involution is called a near-ring with *-involution or *- near-ring. We refer the reader to the books of Clay [6], Meldrum [9] and Pilz [11] for the near-ring theory and its applications. Recall that a near-ring N is called 0 - prime if the product of any two of its ideals is non-zero. In addition, a near-ring N is called 3 - prime if for any non-zero x, y ∈ N, xNy ≠ {0} [7, 12]. Posner published his paper [13] in 1957; various authors have investigated the properties of derivations of prime and semi prime rings. Existence important ring theory tools [4], these outcomes are one of the sources of the developments of such theories as the theory of differential identities [8] and the theory of Hopf algebra action on rings [8], [10]. The study of derivations of near-rings was initiated by Bell and Mason in 1997 [2], but up to now only a few papers on 3-prime near-rings were published.

Bell, Boua, and Oukhtite [4] generalized some results known in this field involving the semi group ideal instead of entire near-rings. From these observations, one can ask a natural question “Can one apply the *-involution on the structure of a 3 – prime near-ring N and its semi group ideal S? The aim of this paper is to give an affirmative answer to this question. In Section 2, we establish that a 3- prime near-ring N with * -involution is an associative ring (or simply a ring). Section 3, devotes the result on semi group ideal of N with *-involution becomes a ring. Also, we construct an example which establishes that our Theorems do not hold even for simple 0-prime near-rings with a right identity element.

2. On 3- prime near-ring with * - involution

In this section, we establish the following result.

Theorem 2.1

Let N be a 3- prime near-ring with * -involution. Then N
is a ring.

Proof

Assume that * is an involution (−involution) on \(N \). We claim that \(N \) is a ring. We break the proof in two steps.

Step 1

We prove the multiplication on \(N \) satisfies left distributive law, that is

\[
x(y + z) = xy + xz \quad \text{for all } x, y, z \in N \tag{2.1}
\]

Using the properties (iii), (ii) and (i) in the definition of −involution and right distributive law, we have

\[
x(y + z) = ((x(y + z))^*)^* = ((y + z)^*x^*) = ((y^* + z^*)x^*) = (y^*x^* + z^*x^*) = ((xy)^*)^* + ((xz)^*)^* = xy + xz.
\]

This completes the proof of Step 1.

Step 2

We show that addition on \(N \) is abelian (viz: \((N, +)\) is abelian)

Replace \(x \) by \((y + z)\) and y and z by w in the relation (2.1) to get

\[
(y + z)(w + w) = (y + z)w + (y + z)w
\]

for any \(w, y, z \in N \).

\[
(y + z)(w + w) = yw + zw + yw + zw
\]

for any \(w, y, z \in N \). \(\tag{2.2} \)

\[
(y + z)(w + w) = y(w + w) + z(w + w)
\]

for any \(w, y, z \in N \).

\[
(y + z)(w + w) = yw + yw + zw + zw
\]

for any \(w, y, z \in N \). \(\tag{2.3} \)

Combining the relations (2.2) and (2.3), we find that

\[
yw + zw + yw + zw = yw + yw + zw + zw
\]

for any \(w, y, z \in N \).

\[
zw + yw = yw + zw
\]

for any \(w, y, z \in N \).

\[
(z + y) - (y + z)w = 0
\]

for all \(w, y, z \in N \).

This implies that \((z + y) - (y + z))N = \{0\}\) for all \(y, z \in N \). \(\tag{2.4} \)

In view of the result of Bell and Mason [2, Lemma 1.2 (i)], and relation (2.4), we have

\[
(z + y) - (y + z) = 0.
\]

Hence \((N, +)\) is an additive abelian group. From Step 1 and Step 2, we see that a 3-prime near-ring \(N \) becomes a ring.

Remark 2.3

The following example shows that the condition of 3-prime near-ring in Theorem 2.1 is essential.

Example 2.4

Take a non-commutative near-ring \(M \) and define

\[
N = \left\{ \begin{pmatrix} 0 & \alpha & \beta \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \mid \alpha, \beta \in \mathbb{N} \right\}, \text{ and a map } *: N \rightarrow N
\]

by \(\begin{pmatrix} 0 & x & y \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & x \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \) for all \(x, y \in M \).

Then * is an involution (−involution) on \(N \), but \(N \) is neither a 3-prime near-ring nor a ring. For instance

For \(*-\text{involution on } N \)

Condition (i) \((x + y)^* = x^* + y^* \) and (ii) \((x^*)^* = x \),

where \(x = \begin{pmatrix} 0 & x_1 & x_2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \) and \(y = \begin{pmatrix} 0 & y_1 & y_2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \), for all \(x_1, x_2, y_1, y_2 \in S \), are straightforward.

(ii) \((xy)^* = \begin{pmatrix} 0 & x_1 & x_2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & y_1 & y_2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \)

Implies \((xy)^* = y^* x^* \).

N is not a 3-prime near-ring

We have

\[
xNy = \begin{pmatrix} 0 & x_1 & x_2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & \alpha & \beta \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & y_1 & y_2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \text{but } x \neq 0 \text{ and } y \neq 0.
\]

From the above observations, one can easily see that \(N \) is not a ring.
3. Semi group ideal with * – involution

We begin with the following definition

Definition 3.1

A non-empty subset S of N is called semi group right ideal (resp. semi group left ideal) of N if SN ⊆ N (resp. NS ⊆ N); and S is said to be a semi group ideal if it is both a right semi group ideal as well as a left semi group ideal of N.

Example 3.2

Let \(N = \{0, \alpha, \beta, \gamma\} \) with addition and multiplication tables defined as follows.

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>(\alpha)</td>
<td>(\beta)</td>
<td>(\gamma)</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>(\alpha)</td>
<td>0</td>
<td>(\gamma)</td>
<td>(\beta)</td>
</tr>
<tr>
<td>(\beta)</td>
<td>(\beta)</td>
<td>(\gamma)</td>
<td>0</td>
<td>(\alpha)</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>(\gamma)</td>
<td>(\beta)</td>
<td>(\alpha)</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
\begin{array}{c|cccc}
+ & 0 & \alpha & \beta & \gamma \\
\hline
0 & 0 & \alpha & \beta & \gamma \\
\alpha & \alpha & 0 & \gamma & \beta \\
\beta & \beta & \gamma & 0 & \alpha \\
\gamma & \gamma & \beta & \alpha & 0 \\
\end{array}
\]

\[
\cdot & 0 & \alpha & \beta & \gamma \\
\hline
0 & 0 & 0 & 0 & 0 \\
\alpha & 0 & \alpha & \alpha & \alpha \\
\beta & 0 & \alpha & \beta & \beta \\
\gamma & 0 & \alpha & \gamma & \gamma \\
\end{array}
\]

Theorem 3.1

Let \(N \) be a 3-prime near-ring and \(S \) a semi group ideal. In addition, if \(S \) admits

\[* - \text{Involution} \]

then \(N \) is a ring.

In order to prove this theorem, we first state the result, due to Bell [2].

Fact 3.2

Let \(S \) be a non-zero semi group ideal of a 3-prime near-ring \(N \) with \(x \in N \); given \(xS = \{0\} \) or \(Sx = \{0\} \) then \(x = 0 \).

Proof of Theorem 3.1

Keeping in mind the proof of Step 1 for entire 3-prime near-ring \(N \), for the sake of convenience, we prove it for every \(a, b, c \) in semi group ideal \(S \) of \(N \).

\[a(b + c) = ((a + b)c)^* = ((b + c)a)^* = (b^*a^* + c^*a^*)^* = (b^*a^*)^* + (c^*a^*)^* = a^*b^* + a^*c^*. \]

This implies that

\[a(b + c) = ab + ac \quad \text{for all} \quad a, b, c \in S. \quad (3.1) \]

Replacing \(mb \) for \(b \) and \(nb \) for \(c \) in (3.1), we get

\[a(mb + nb) = amb + anb \quad \text{for all} \quad a, b, c \in S. \]

\[[a(m + n) - (am + an)]b = 0 \quad \text{for all} \quad a, b, c \in S, \]

where \(m, n \in N \). But, for all \(b \in S \), also

\[
[\alpha(m + n) - (an + am)]S = \{0\} \quad (3.2)
\]

Using Fact 3.2 and (3.2), we find that

\[l(m + n) = lm + ln \quad \forall l, m, n \in N \]

Hence, the multiplications of \(N \) satisfies left distributive law, \((N, +) \) is an additive abelian group from Step 2 of Theorem 2.1. □

Corollary 3.3

Let \(N \) be a 3-prime near-ring and \(S \) is a non-zero ideal of \(N \). If \(S \) admits \(* - \text{involutions} \), then \(N \) is a ring.

Proof of the Corollary 3.3 follows immediately from Theorem 3.1. □

Remark 3.4

We construct an example which shows that Theorem 3.1 does not hold even for simple 0-prime near-rings with a right identity element.

Example 3.5

Suppose that \(M \) be a linear space with a basis \(B = \{e_M, e_{e_2}, e_3, \ldots, e_m\} \) over a field \(K \) of characteristic \(\neq 2 \). Define a multiplication \(\cdot : M \times M \to M \) by the rule

\[m n = 0 \quad \text{for all} \quad m, n \in M \quad \text{with} \quad n \notin \{e_M, -e_M\} \quad \text{and} \quad m e_M = m, \quad m (-e_M) = -m. \]

It is easily seen that \(M \) is a right near-ring. Also \(M \) is a zero symmetric right near-ring with respect to this multiplication (See [1]).

Next, we show that \(M \) is a near-ring with the right identity \(e_M \). Take a non-zero semi group ideal \(S \) of \(M \). Let \(e_M \in S \). Then \(M = Me_M \subseteq S \). This is a contradiction. Thus \(e_M \notin S \). If \(n \in S \), then either \(n + e_M \neq -e_M \) or \(n + (-e_M) \neq e_M \). From the first case, it is easily seen that \(e_M + n \neq e_M \). Thus \(m (e_M + n) = 0 \) for all \(m \in M \), since \(S \) is a semi group ideal, we write \(m = m (e_M + n) - m e_M \in S \), for all \(m \in M \). This implies that \(M \subseteq S \), a contradiction. Hence \(M \) is a right near-ring with identity \(e_M \). Trivially, \(M \) is not a ring.

4. Open questions

In retrospect, we would like to open the questions for further studies as given below.

Question 1: Can the hypothesis that 3-prime be removed from the assumptions in Theorem 2.1 and Theorem 3.1?

Question 2: Can the hypothesis that semi group ideal be removed from the assumptions in Theorem 3.1?

Question 3: Can the hypothesis that \(* - \text{inversion} \) be removed from the assumptions in Theorem 2.1 and Theorem 3.1?

References

